1. Find the next four terms of the arithmetic sequence $18, 13, 8, \dots$

2. Find the 15th term of the arithmetic sequence in which $a_1 = 10 \text{ and } d = 4.$

2.

4. Find the four arithmetic means between -8 and 17.

5. Find S_n for the arithmetic series in which $a_1 = 5$, $a_n = 104$, and n = 34.

6. Find the sum of the arithmetic series $7 + 4 + 1 + \cdots + (-32)$.

7. Find $\sum_{n=3}^{7} (2n-4)$.

8. Find the fifth term of the geometric sequence for which $a_1 = 80 \text{ and } r = \frac{3}{2}$.

9. Find the next two terms of the geometric sequence $9, 6, 4, \dots$

11. Find four geometric means between 2430 and 10.

12. Find the sum of the geometric series $\frac{1}{4} + \frac{1}{2} + 1 + \cdots$ to 7 terms.

12. ___

13. Find $\sum_{n=1}^{6} 5 \cdot 3^{n-1}$.

- 14. Find a_1 in a geometric series for which $S_n=242$, r=3, and n=5.
- 14. _____

For Questions 15 and 16, find the sum of each infinite geometric series, if it exists.

15.
$$\sum_{n=1}^{\infty} 15 \left(\frac{4}{5}\right)^{n-1}$$

16.
$$3+4+\frac{16}{3}+\cdots$$

For Questions 18 and 19, find the first five terms of each sequence.

18.
$$a_1 = 11, a_{n+1} = a_n + 2n$$

19.
$$a_1 = 4$$
, $a_2 = -3$, $a_{n+2} = a_{n+1} + a_n$

20.
$$a_1 = 3$$
, $a_2 = 4$, $a_n = 2a_{n-2} + 3a_{n-1}$

20)_____